The study is based on the results of state-of-the-art modeling using data from the Intergovernmental Panel on Climate Change as well as satellite images and observations from on the ground in Greenland.
Mernild and his team found that the total amount of Greenland Ice Sheet freshwater input into the North Atlantic Ocean expected from 2071 to 2100 will be more than double what is currently observed. The current East Greenland Ice Sheet freshwater flux is 257 km3 per year from both runoff and iceberg calving. This freshwater flux is estimated to reach 456 km3 by 2100.
Mernild’s results further show a change in total East Greenland freshwater flux from today’s values of 438 km3 per year to 650 km3 per year by 2100. This indicates an increase in global sea level rise estimates from 1.1 millimeters per year to 1.6 millimeters per year.
“The Greenland Ice Sheet mass balance is changing as a response to the altered climatic state,” said Mernild. “This is faster than expected. This affects freshwater runoff input to the North Atlantic Ocean, and plays an important role in determining the global sea level rise and global ocean thermohaline circulation.”
Mernild is conducting the research as part of the University of Alaska’s International Polar Year efforts. He was appointed a University of Alaska IPY postdoctoral fellow by UA president Mark Hamilton in 2007.
Southern tip of Greenland on November 2, 2001. New data shows that the Greenland Ice Sheet is melting faster than previously calculated.
No comments:
Post a Comment